
Graphs

See Chapter 14 of the text.



So far this semester we have talked about many 
specific data structures -- lists, queues, stacks, 
binary trees, heaps, etc.

We will now look at graphs, which are much 
more general.  

Many, many problems can be solved by creating 
a graph that represents the problem, processing 
the graph, and thereby creating a solution for 
the problem.  



For example, suppose we are writing a scheduler 
for a collection of processes.  Some processes get 
input from others.  If process B gets input from A, 
we need to schedule A before we schedule B.  Our 
task is to find an ordering of the processes so that 
we complete each before its output is needed by 
any other process.  

Here is a way to solve this problem:

First, make a graph where each process is 
represented by a node of the graph.  Add an edge 
in the graph from node X to node Y if X needs to 
be processed before Y.  



Our graph might look like this:
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Question: Let's see if you understand the setup.  
We want to process X before Y if there is an edge 
from X to Y.  Here is a graph:
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Which is a correct ordering?
A. B E D A C F
B. A B C D E F
C. B A C E F D
D. B A E C F D



A

B

C

E

D

F

Answer C: B A C E F D is one correct ordering.

Another correct ordering is B A C F E D.

B C E F A D is NOT a correct ordering, since there is 
an edge from A to E but A comes after E in the 
ordering.
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To process this graph we will make a set of nodes 
we call our "WorkingSet".  Initially our 
WorkingSet consists of all nodes that have no 
incoming edges.

For the graph above WorkingSet = {B}



Here is the algorithm we use to process the 
graph.  On each step:

a) Remove any one node from the 
WorkingSet.  Call this node X.  

b) Remove every edge from node X to any 
other node Y. If node Y has no other 
incoming edges, add node Y to the 
WorkingSet.

c) Add node X to the output.
Continue these steps until the WorkingSet is 
empty.  
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We start with this graph:

WorkingSet = {B}

Output = [ ]

On the first step we remove B from the 
WorkingSet, add it to the output, and we 
remove the edges from B to A, E, and C
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WorkingSet = {}

Output = [B ]

We removed the only incoming edge for node A, 
so we add it to the WorkingSet:

WorkingSet = {A}
Output = [B ]

For the next step we remove A from the WorkingSet, 
add it to the output, and remove its outgoing edges
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WorkingSet = {}
Output = [B, A ]

C now has no incoming edges, so we add it to the 
WorkingSet:

WorkingSet = {C}
Output = [B, A ]

On the next step we remove C and its edges; this 
leaves E and F with no incoming edges
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WorkingSet = {E, F}

Output = [B, A, C]

On the next three steps the algorithm outputs E 
and F in either order, then D.



Our ordering is thus either  [B, A, C, E, F, D] or [B, 
A,C, F, E, D].  If you compare these to the original 
graph you can see that no node appears in either 
list before any of its dependencies.  
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Question: Does our algorithm work for this graph?

A. Yes
B. No
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Answer:  No; there is no node with no incoming 
edges, so our initial Working Set is empty..
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Does our algorithm work for this graph?

A. Yes
B. No
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No matter what order we list them, nodes C, E, D, 
and F always have incoming edges.



When does our algorithm not work?

A. It never works

B. If the graph has too many nodes?

C. If the graph has a cycle -- a sequence of 
edges from node to node that eventually gets 
back to its starting point.

D. If the problem has no solution



Answer:
The algorithm does not work if graph has a cycle: 
a chain of nodes with the first pointing to the 
second, the second to the third, and so forth, with 
the last node pointing back to the first.

The algorithm does work on any graph that does 
not have a cycle.



By the way, the process of enumerating in an order                   
that is consistent with the edges of the graph is 
called a topological sort of the graph. The 
algorithm we have been discussing gives a 
toplogical sort of any graph that does not contain a  
cycle.



This idea of mapping a problem to a graph and 
processing the graph to solve the problem has 
many applications.  To consider any of these we 
need some terminology and we need to look at 
some ways to represent graphs.


